

In high volume manufacturing requires optimization of test system throughput, to maximize production volume without increasing floor space. The PEL-2000 Series electronic loads can help you in a number of ways to achieve this goal.

The PEL-2000 Series that the current trend in semiconductors is towards lower voltages and higher speeds. This trend places similar demands on both the components of semiconductor power units, such as switching power supplies, batteries and DC/ DC converters, and also on the electronic loads used for testing. The advent of an electronic load system that satisfies all these needs has been long awaited. The PEL-2000 Series of compact and high-performance modular electronic loads is capable of operating in CC/CR/CV mode. The load system consists of load modules and a main frame. The load modules are inserted into the main frame that also serves as a master unit. The PEL-2002 frame can accommodate up to two load modules, while the PEL-2004 frame can accommodate up to four. The PEL -2000 Series it has including variable slew rate, a switching function, 10 preset memory function, 120 sets setup memories, and a sequence function. For communication, the system is provided with USB and RS-232C interfaces as standard otherwise it also has optional GPIB Interface. Both of RS-232C and GPIB those interfaces support IEEE 488.2 as well as the Standard Commands for Programmable Instruments (SCPI) commands, developed for testing and measuring instruments.

Programmable delay allows for either simultaneous or sequential load changes: This is the most efficient way to conduct testing of multiple output DC power supplies, simulating real-life loading patterns, with a minimum of programming commands.

Increase System Flexibility for future requirements that the most of power supply and battery charger test systems designed today need to test a variety of products and assemblies. In the future, additional products or assemblies may be needed. A flexible family of electronic loads makes present system design and future growth much easier.

When customer were testing high current power supplies that electronic load modules can be operated in parallel to provide addition current sinking capability. There are also have analog control programming and monitoring ports for those applications that utilize as standard interfaces, require custom waveforms, or utilize process control signals.

For a CV power supply, measurement of the output voltage and input voltage should be made after the load is varied from the minimum to the full current rating of the power supply under test. Measurement of the AC input voltage is necessary to ensure that the output voltage change is a result of only the load change, and not from a change in the ac input. To decrease the test time when test throughput is a concern, a regulated AC source providing a predetermined AC input level and frequency can be utilized. This will eliminate the need for the ac input voltage measurement. The output voltage should be allowed the specified settling time before measurements are taken. An electronic load selected for this test must be capable of operating in CC or CR mode, and must have input ratings (voltage, current, and power) sufficient to accommodate the maximum ratings of the power supply under test.

PEL-2000 Series

FEATURES

- 10 sets of Preset Memory
- Parallel Operation for Increased Capacity
- Sequence Function to Enable Load Simulations
- External Waveform Control Functions
- High Precision and High Resolution
- Variable Slew Rate
- Multi-Channel System up to 8 Channel Outputs
- Parallel Operation for Increased Capacity
- Sequence Function to Enable Load Simulations
- External Waveform Control Functions
- Delay Control
- OPP/OCP/OVP/OTP Protection all Level Could be Change
- Multi-Interface USB Device/Host, RS-232C, GPIB (Optional)
- 120 Sets Setup Memory

APPLICATIONS

- R \& D Design and Verification for : Switching Power Supply, Server Power AC/DC Adaptor • AC/DC Power Module Power IC, DC/DC Power Module Fuse , Battery, Automotive Wire , Switch/Relay
- Laboratories and Educational Facilities
- Product Testing and Quality Assurance

	EL-2020		PEL-2030			PEL-2040		PEL-2041	
CHANEL RANGE POWER CURRENT min.OPERATING VOLTAGE(dc)	$\begin{array}{\|l\|} \hline \text { L/R } \\ \text { Low } \\ 100 \mathrm{~W} \\ 0-2 \mathrm{~A} \\ 1180 \mathrm{~V} \\ 1.0 \mathrm{~V} \text { at } 2 \mathrm{~A} \end{array}$	L/R High 100 W $0 \sim 20 \mathrm{~A}$ $1 \sim 80 \mathrm{~V}$ 1.0 V at 20A	$\begin{aligned} & \hline \text { Left } \\ & \text { N/A } \\ & 30 \mathrm{~W} \\ & 005 \mathrm{~A} \\ & 1780 \mathrm{~V} \\ & 1.0 \mathrm{~V} \text { at } 5 \mathrm{~A} \end{aligned}$	Right Low 250 W $00-4 \mathrm{~A}$ $11-80 \mathrm{~V}$ 1.0 V at 4A	Right High 250 W $0 \sim 40 \mathrm{~A}$ $1 \sim 80 \mathrm{~V}$ 1.0 V at 40 A	Low 350W 0~7A $1 \sim 80 \mathrm{~V}$ 1.0V at 7A	High 350 W 0~70A lVat 70	$\begin{aligned} & \text { Low } \\ & 350 \mathrm{~W} \\ & 0-1 \mathrm{~A} \\ & 2.5-500 \mathrm{~V} \\ & 2.5 \mathrm{Vat} 1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { High } \\ & 350 \mathrm{~W} \\ & 0.10 \mathrm{~A} \\ & 2.5-500 \mathrm{~V} \\ & 2.5 \mathrm{Vat} 10 \mathrm{~A} \end{aligned}$
STATIC MODE									
CONSTANT CURRENT MODE Range Resolution Accuracy	$\stackrel{0}{0-2 \mathrm{~A}} \underset{0}{0.5 \mathrm{~mA}}$ \pm 0.1% F.S.)	$\begin{aligned} & 0 \sim 20 \mathrm{~A} \\ & 5 \mathrm{~mA} \\ & \pm(0.1 \% \text { set + }+ \\ & 0.1 \% \mathrm{~F} . \mathrm{S} .) \end{aligned}$	$\begin{aligned} & 0 \sim 5 \mathrm{~A} \\ & 1.25 \mathrm{~mA} \\ & \pm(0.1 \% \text { set }+ \\ & 0.1 \% \mathrm{~F} . \mathrm{S} .) \end{aligned}$	$\begin{aligned} & 0 \sim 4 \mathrm{~A} \\ & 1 \mathrm{~mA} \\ & \pm .0 .1 \% \text { set } \\ & 0.1 \% \mathrm{FS.S}) \end{aligned}$	$\begin{aligned} & 0 \sim 40 \mathrm{~A} \\ & 10 \mathrm{~mA} \\ & \pm(0.1 \% \text { set }+ \\ & 0.2 \% \mathrm{~F} . \mathrm{S} .) \end{aligned}$	$\begin{aligned} & 0-7 \mathrm{~A} \\ & 1 \mathrm{~mA} \\ & \pm \pm 0.1 \% \text { set }+ \\ & 0.1 \% \mathrm{FS.} .) \end{aligned}$			$\begin{aligned} & 0 \sim 10 \mathrm{~A} \\ & 2 \mathrm{~mA} \\ & \pm(0.1 \% \text { set }+ \\ & 0.2 \% \mathrm{~F} . \mathrm{S} .) \end{aligned}$
CONSTANT RESISTANCE MODE Range Resolution Accuracy			$0.3 \Omega \sim 1.2 \mathrm{~K} \Omega$ (30W/16V) (30W/80V) 12 bits $12 \mathrm{~K}: \pm \pm 0.2 \% \mathrm{set}+0.10$ 60x2: 10.19 sest+0.010 With $22.5 V$ at input						
CONSTANT VOLTAGE MODE Range Resolution Accuracy	$\begin{aligned} & 1-80 \mathrm{~V} \\ & 20 \mathrm{mv} \\ & \pm(0.05 \% \text { set }+0.1 \% \text { F.s. }) \end{aligned}$		$\begin{aligned} & 1 \sim 80 \mathrm{~V} \\ & 20 \mathrm{mv} \\ & \pm(0.05 \% \text { set }+0.1 \% \text { F.S. }) \end{aligned}$			$\begin{aligned} & 1-80 \mathrm{~V} \\ & 20 \mathrm{mv} \\ & \pm(0.05 \% \text { set }+0.1 \% \text { F.s. }) \end{aligned}$		$\begin{aligned} & 2.5-500 \mathrm{~V} \\ & 100 \mathrm{mv} \\ & \pm(0.05 \% \text { set }+0.1 \% \text { F.S. }) \end{aligned}$	
DYNAMIC MODE									
CONSTANT CURRENT MODE T1\&T2 Accuracy	$\begin{aligned} & 0.025 \mathrm{mS}-10 \mathrm{mS} / \text { Res }: 1 \mu \mathrm{~S} \\ & 1 \mathrm{mS}-30 \mathrm{Res} / 1 \mathrm{mS} \\ & 1 \mu \mathrm{~S} / 1 \mathrm{mS} \pm 100 \mathrm{ppm} \\ & \hline \end{aligned}$		$0.025 \mathrm{mS} \sim 10 \mathrm{mS} /$ Res: $1 \mu \mathrm{~S}$ 1 mS ~ $30 \mathrm{~S} / \mathrm{Res}: 1 \mathrm{mS}$ $1 \mu \mathrm{~S} / 1 \mathrm{mS}+100 \mathrm{ppm}$			$0.025 \mathrm{mS} \sim 10 \mathrm{mS} /$ Res $: 1 \mu \mathrm{~S}$ $1 \mathrm{mS} \sim 30 \mathrm{~S} / \mathrm{Res}: 1 \mathrm{~ms}$ $1 \mu \mathrm{~S} / 1 \mathrm{mS} \pm 100 \mathrm{ppm}$		$0.025 \mathrm{mS} \sim 10 \mathrm{mS} /$ Res: $1 \mu \mathrm{~S}$ $1 \mathrm{mS} \sim 30 \mathrm{~S} / \mathrm{Res}: 1 \mathrm{mS}$ $1 \mu \mathrm{~S} / 1 \mathrm{mS} \pm 100 \mathrm{ppm}$	
Slew Rate(t10\%set+15 ${ }^{\text {S }}$ S) Slew Rate Resolution Current Curent Resolution Current Accuracy	$\begin{aligned} & 0.32 \sim 80 \mathrm{~mA} / \mu \mathrm{S} \\ & 0.32 \mathrm{~mA} / \mu \mathrm{S} \\ & 0 \sim 2 \mathrm{~A} \\ & 0.5 \mathrm{~mA} \\ & \pm 0.4 \% \text { F.S. } \end{aligned}$	$\begin{aligned} & 3.2-800 \mathrm{~mA} / \mathrm{MS} \\ & 0.2 \mathrm{~A} / \mu \mathrm{S} \\ & 0-20 \mathrm{~A} \\ & 5 \mathrm{~mA} \\ & \pm 0.4 \% \mathrm{~F} . \mathrm{S} \end{aligned}$	$\begin{aligned} & 0.8-200 \mathrm{~mA} / \mathrm{\mu s} \\ & 0.8 \mathrm{~s} \\ & 0-5 \mathrm{~A} \\ & 1.25 \mathrm{~mA} \\ & \pm 0.4 \% \mathrm{~F} . \mathrm{s} . \end{aligned}$	$\begin{aligned} & 0.06 .160 \mathrm{~mA} / \mathrm{ms} \\ & 0.64 \mathrm{sA} / \mathrm{s} \\ & 0-4 \mathrm{~A} \\ & 1 \mathrm{~mA} \\ & \pm 0.4 \% \mathrm{~F} . \mathrm{S} . \end{aligned}$	$\begin{aligned} & 6.4-1600 \mathrm{~mA} / \mathrm{MS} \\ & 6.4 \mathrm{~mA} / \mathrm{HS} \\ & 0-40 \mathrm{~A} \\ & 10 \mathrm{~mA} \\ & \pm 0.4 \% \mathrm{~F} . \mathrm{S} . \end{aligned}$	$\begin{aligned} & 0.001-0.28 \mathrm{~A} / \mathrm{LS} \\ & 0.00 \mathrm{~A} / \mathrm{A} \mathrm{~S} \\ & 0 \sim \mathrm{AA} \\ & 1 \mathrm{~mA} \\ & \pm 0.4 \% \mathrm{FF} . \mathrm{S} \end{aligned}$	$\begin{aligned} & 0.01-2.8 \mathrm{~A} / \mathrm{MS} \\ & 0.07 \mathrm{APA} \\ & 0 \sim 7 \mathrm{~A} \\ & 10 \mathrm{~mA} \\ & \pm 0.4 \% \mathrm{~F} . \mathrm{S} . \end{aligned}$	$\begin{aligned} & 0.16-40 \mathrm{~mA} / \mathrm{\mu S} \\ & 0.16 \mathrm{~mA} / \mathrm{HS} \\ & 0.1 \mathrm{~A} \\ & 0.2 \mathrm{~mA} \\ & \pm 0.4 \% \text { F. } \mathrm{S} \end{aligned}$	$1.6-400 \mathrm{~mA} / \mathrm{MS}$ $1.6 \mathrm{~mA} / \mathrm{LS}$ $0-10 \mathrm{~A}$ 2 mA $\pm 0.4 \% \mathrm{~F} . \mathrm{S}$.
MEASUREMENT									
VOLTAGE READBACK Range Resolution Accuracy	$\begin{aligned} & 0-16 \mathrm{~V} \\ & 0.5 \mathrm{VV} \\ & \pm 0.05 \% \text { set } \\ & +0.05 \% \mathrm{~F} . \end{aligned}$	$\begin{aligned} & 0-80 \mathrm{~V} \\ & 2.5 \mathrm{mv} \\ & \pm 0.05 \% \text { set } \\ & \pm+0.05 \% \text { F.S. } \end{aligned}$	$0 \sim 16 \mathrm{~V}, 0-80 \mathrm{~V}$ $0.5 \mathrm{mV}, 2.5 \mathrm{mV}$ $\pm(0.05 \%$ set $+0.05 \%$ F.S. $)$	$\begin{aligned} & 0-16 \mathrm{~V} \\ & 0.5 \mathrm{mv} \\ & \pm \pm 0.05 \% \text { set } \\ & +0.05 \% \text { F.S.) } \end{aligned}$	$\begin{aligned} & 0 \sim 80 \mathrm{~V} \\ & 2.5 \mathrm{mV} \\ & \pm(0.05 \% \text { set } \\ & +0.05 \% \mathrm{~F} . \mathrm{S} .) \end{aligned}$	$\begin{aligned} & 0 \sim 16 \mathrm{~V} \\ & 0.5 \mathrm{VV} \\ & \pm(0.05 \text { set } \\ & +0.05 \% \text { F.S. }) \end{aligned}$		$\begin{aligned} & \left.\begin{array}{l} 0 \sim 125 \mathrm{~V} \\ 4 \mathrm{mv} \\ \pm(0.05 \% \text { set } \\ +0.05 \% \text { F.S. } \end{array}\right) \end{aligned}$	$\begin{aligned} & 0-500 \mathrm{~V} \\ & 16 \mathrm{mv} \\ & \pm(0.05 \% \text { set } \\ & +0.05 \% \text { F.S. }) \end{aligned}$
CURRENT READBACK Range Resolution Accuracy	$\begin{aligned} & 0-2 \mathrm{~A} \\ & 0.025 \mathrm{~mA} \\ & \pm 0.1 \% \text { set } \\ & +0.1 \% \mathrm{~s} .5 .) \end{aligned}$	$\begin{aligned} & 0-20 \mathrm{~A} \\ & 0.62 \mathrm{~mA} \\ & \pm 0.1 \% \text { set } \\ & +0.1 \% \mathrm{~F} .5 .) \end{aligned}$	$\begin{aligned} & 0-5 \mathrm{~A} \\ & 0.15625 \mathrm{~mA} \\ & \pm(0.1 \% \text { set } \\ & +0.1 \% \text { F.S.) } \end{aligned}$	$\begin{aligned} & 0-4 \mathrm{~A} \\ & 0.12 \mathrm{~mA} \\ & \pm 0.1 \% \text { set } \\ & +0.1 \% \mathrm{~F} . \mathrm{S} . \end{aligned}$	$\begin{aligned} & 0 \sim 40 \mathrm{~A} \\ & 1.25 \mathrm{~A} \\ & \pm 0.1 \% \text { set } \\ & +0.1 \% \text { F.S.) } \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~A} \\ & 0.775 \mathrm{~mA} \\ & \pm(0.1 \% \mathrm{set} \end{aligned}$ $\begin{aligned} & \pm(0.1 \% \text { set } \\ & +0.1 \% \text { F. } .) \end{aligned}$	$\begin{aligned} & 0-70 \mathrm{~A} \\ & 1.75 \mathrm{~m} \\ & \pm(0.1 \% \text { set } \\ & +0.1 \% \mathrm{~F} .5 .) \end{aligned}$	$\begin{aligned} & 0-1 \mathrm{~A} \\ & 0.032 \mathrm{~mA} \\ & \pm(0.1 \% \text { set } \\ & +0.1 \% \mathrm{FS.} .) \end{aligned}$	$\begin{aligned} & 0 \sim 10 \mathrm{~A} \\ & 0.32 \mathrm{~mA} \\ & \pm 0.1 \% \text { set } \\ & +0.1 \% \mathrm{~F} . \mathrm{S} . \end{aligned}$
PROTECTIVE									
Over Power Protection $(\pm 2 \%$ set $+0.25 \%$ F.S.) Range Over Current Protection ($\pm 2 \%$ set $+0.25 \%$ F.S.) Range Over Voltage Protection ($\pm 2 \%$ set $+0.25 \%$ F.S.) Range Resolution Over Temperature Protection Rated Power Protection($\pm 2 \%$ set $)$ Value Value	$\begin{aligned} & 1-102 \mathrm{~W} \\ & 0.5 \mathrm{~W} \\ & 00.20 .4 \mathrm{~A} \\ & 0.05 \mathrm{~A} \\ & 1-81.6 \mathrm{~V} \\ & 0.2 \mathrm{~V} \\ & =85^{\circ} \mathrm{C} \\ & 110 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 1-30.6 \mathrm{~W} \\ & 0.15 \mathrm{~W} \\ & 0-5.1 \mathrm{~A} \\ & 0.0125 \mathrm{~A} \\ & 1-81.6 \mathrm{~V} \\ & 0.2 \mathrm{~V} \\ & =85^{\circ} \mathrm{C} \\ & 33 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1-255 \mathrm{~W} \\ & 1.25 \mathrm{~W} \\ & 0-40.8 \mathrm{~A} \\ & 0.1 \mathrm{~A} \\ & 1-81.6 \mathrm{~V} \\ & 0.2 \mathrm{~V} \\ & =85^{\circ} \mathrm{C} \\ & 275 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 1-357 \mathrm{~W} \\ & 1.75 \mathrm{~W} \\ & 00.71 .4 \mathrm{~A} \\ & 0.175 \mathrm{~A} \\ & 1-81.6 \mathrm{~V} \\ & 0.2 \mathrm{~V} \\ & =85^{\circ} \mathrm{C} \\ & 385 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 1-357 \mathrm{~W} \\ & 1.75 \mathrm{~W} \\ & 0010.2 \mathrm{~A} \\ & 0.025 \\ & 1-510 \mathrm{~V} \\ & 1.25 \mathrm{~V} \\ & =855^{\circ} \mathrm{C} \\ & 385 \mathrm{~W} \end{aligned}$	
GENERAL									
Current(CC) Voltage(CV) Resistance(CR)			$\begin{aligned} & =5.5 / 5 \mathrm{~A} \\ & \text { ov. } \\ & =15 \Omega,=0.3 \Omega \end{aligned}$	$\begin{aligned} & -4.4 / 4 \mathrm{~A} \\ & \text { OV } \\ & \vdots 1.875 \Omega \end{aligned}$			$\begin{aligned} & \fallingdotseq 77 / 70 \mathrm{~A} \\ & O \mathrm{OV} \\ & \doteqdot 0.025 \Omega \end{aligned}$	$\begin{aligned} & =1.1 / 1 \mathrm{~A} \\ & \begin{array}{l} \mathrm{ov} \\ \fallingdotseq 50 \Omega \end{array} \end{aligned}$	
InPUT RESISTANCE(LOAD OFF)	$800 \mathrm{~K} \Omega$ (Typical)		800 K (Typical)			$800 \mathrm{~K} \Omega$ (Typical)		$800 \mathrm{~K} \Omega$ (Typical)	
WEIGHT	Approx. 3.8 kg								
DIMENSIONS \& WEIGHT(PEL-2002)	272 mm (W) $\times 200 \mathrm{~mm}$ (H) $\times 581 \mathrm{~mm}$ (D) ; Approx. 16.1 kg (full modules)								
DIMENSIONS \& WEICHT(PEL-2004)	$435 \mathrm{~mm}(\mathrm{~W}) \times 200 \mathrm{~mm}(\mathrm{H}) \times 581 \mathrm{~mm}$ (D) ; Approx. 24.8 kg (full modules)								

ORDERING INFORMATION

PEL-2002 Mainframe For Two Load Module
PEL-2004 Mainframe For Four Load Module
PEL-2020 Programmable D.C. Electronic Load Module
PEL-2030 Programmable D.C. Electronic Load Module PEL-2040 Programmable D.C. Electronic Load Module PEL-2041 Programmable D.C. Electronic Load Module

Note : Load module can't be used without mainframe
$435 \mathrm{~mm}(\mathrm{~W}) \times 200 \mathrm{~mm}(\mathrm{H}) \times 581 \mathrm{~mm}(\mathrm{D})$; Approx. 24.8 kg (full modules)

ACCESSORIES

PEL-2002/2004

User manual x1, Power cord x1
PEL-2020/2030/2040/2041
GTL-120 Test lead x 1, GTL-121 Sense lead x 1
OPTIONAL ASSESSORIES

PEL-001 GPIB card	PEL-003	Panel cover	GTL-248	GPIB cable
PEL-002 PEL-2004 Rack mount kit	GTL-246	USB cable	GTL-249	Frame link cable

Global Headquarters

GOOD WILL INSTRUMENT CO., LTD.
No. 7-1, Jhongsing Road, Tucheng City, Taipei County 236, Taiwan
$\mathbf{T}+886$-2-2268-0389 F +886-2-2268-0639
E-mail: marketing@goodwill.com.tw
China Subsidiary
INSTEK ELECTRONIC (SHANGHAI) CO., LTD.
8F, of NO. 2 Building, No. 889 Yishan Road, Shanghai China
T+86-21-6485-3399 F +86-21-5450-0789
E-mail: marketing@instek.com.cn

Malaysia Subsidiary
GOOD WILL INSTRUMENT (M) SDN. BHD.
27, Persiaran Mahsuri 1/1, Sunway Tunas,
11900 Bayan Lepas, Penang, Malaysia.
T +604-6309988 F +604-6309989
E-mail: sales@goodwill.com.my

U.S.A. Subsidiary

NSTEK AMERICA CORP

3661 Walnut Avenue Chino, CA 91710, U.S.A
T+1-909-5918358 F +1-909-5912280
E-mail: sales@instekamerica.com
Japan Subsidiary
INSTEK JAPAN CORPORATION
4F, Prosper Bldg, 1-3-3 Iwamoto-Cho Chiyoda-Ku,
Tokyo 101-0032 Japan
T+81-3-5823-5656 F +81-3-5823-5655
E-mail: info@instek.co.jp
Korea Subsidiary
GOOD WILL INSTRUMENT KOREA CO., LTD.
Room No.805, Ace Hightech-City B/D 1Dong,
Mullae-Dong 3Ga 55-20, Yeongduengpo-Gu, Seoul, Korea
T+82 234392205 F + 82234392207
E-mail : gwinstek@gwinstek.co.kr

